RU Войти
Статья

COLLOIDAL STRUCTURES FOR STRENGTHENING MINERAL AND ORGANIC BINDERS ARE THE FUTURE OF AN ENVIRONMENTALLY FRIENDLY AND CLIMATE-RESISTANT TRANSPORT INFRASTRUCTURE

R. Asmatulayev Associate Professor | Kazakh Automobile and Road Institute | ruslan_asmatulaev@mail.ru
B. А. Asmatulayev доктор технических наук, почетный профессор МАДИ, Академический советник Национальной инженерной академии РК, директор по науке ТОО НИ ПК «Каздоринновация» | ТОО НИ ПК «Каздоринновация» | boris-aisa@mail.ru
Н. Б. Асматулаев PhD/Технический директор | ТОО НИиПК «Каздоринновация» | Activ-cz@mail.ru

Аннотация

The article presents the outcomes of fundamental laser research, experimental studies, and long-term monitoring of roads constructed using belite cements and asphalt binders. These materials, rich in bicalcium silicate (C2S-belite 50 – 80%), ensure road concrete durability for up to 50 years without repairs. Laser studies revealed the unique colloidal structures of belitic cement, which include calcium hydrosilicates (CSH), enhancing cement hydration and promoting self-healing (thixotropy) and hardening under load (rheopexy). Belite cements enable efficient year-round road construction in Kazakhstan’s harsh climate, with roads enduring for 35–48 years due to long-term hardening. This approach revives the theory of V. Michaelis, emphasizing the durability of colloidal structures over crystalline alite cements, which degrade after 20–30 years due to incomplete hydration. The novelty of this work is supported by patents, shedding light on the enduring properties of ancient Roman concrete. Asphalt concrete, typically lasting 10 years, retains its properties for recycling. The 2016 Eurobitumen Congress highlighted fully recycled asphalt layers. In Kazakhstan, researchers developed an innovative asphalt concrete theory, extending service life by preserving the colloidal binder structure and preventing bitumen aging. This research underlines the advantages of nanotechnology in road construction, confirmed by laboratory tests and monitoring roads in service for over 35 years. For the first time, Kazakhstan demonstrates the environmental and structural limitations of traditional Portland cement and bitumen, advocating for advanced materials to ensure sustainable and durable transport infrastructure
Список использованной литературы: Kochetkov A.V., Kokodeeva N.V., Rapoport P.B., Rapoport N.V., Shashkov I.G. (2011). Calculation and design of road pavements // Automobile roads. – Volume №12. – pp. 86-94 [Kochetkov A.V., Kokodeeva N.V., Rapoport P.B., Rapoport N.V., Shashkov I.G. (2011) Raschet i konstruirovanie dorozhnyh odezhd // Avtomobil'nye dorogi. – №12. – Р. 86-94.] (in Rus.). Radovsky B.S. (2011). The concept of timeless travel clothes. Directory catalog: Road equipment. – P. 120-132 [Radovskij B.S. (2011). Koncepciya vechnyh dorozhnyh odezhd. Katalog-spravochnik: Dorozhnaya tekhnika. – Р. 120-132.] (in Rus.). Gorelyshev N.V. (1995). Asphalt concrete and other bitumen and mineral materials. Mozhaisk-Terra. – P. 176. [Gorelyshev N.V. (1995) Asfal'tobeton i drugie bitumomineral'nye materialy. Mozhajsk-Terra. – Р. 176.] (in Rus.). Asmatulaev B.A., Sheinin A.M., Chumachenko V.I. and other. (1993). Rolled concrete based on slag binder // Automobile roads. – 1993. – №9. – P. 18-20. [Asmatulaev B.A., Shejnin A.M., Chumachenko V.I. and other. Ukatyvaemyj beton na osnove shlakovogo vyazhushchego // Avtomobil'nye dorogi. – № 9. – Р. 18-20.] (in Rus.). Asmatulaev B.A. and others (2015) Innovative patent № 29852 RK. Self-healing road concrete / bulletin. № 5. [Innovacionnyj patent № 29852 RK. Samovosstanavlivayushchijsya dorozhnyj beton / Asmatulaev B.A. i dr. Publ. 05.15.15, byul. №. 5.] Taylor H.F.(1969). Calcium hydrosilicates. Chemistry of cement. – M.: Stroyizdat. – P.17-18. [Tejlor HF Gidrosilikaty kal'ciya. (1969) Himiya cementa. – M.: Strojizdat. – Р.17-18.] Sanchez F., Zhang L., Ince C. (2009). Multi-scale performance and durability of carbon nanofiber/cement composites. In: Bittnar Z, Bartos Pj.M., Nemecek J., Smilauer V., Zeman J., editors. Nanotechnology in construction: proceedings of the NICOM3 (3rd international symposium on nanotechnology in construction). Prague, Czech Republic. p. 345–50. H. M. Jennings, J. W. Bullard, J. J. Thomas, J. E. Andrade, J. J. Chen, G. W. Scherer.(2008). Characterization and modeling of pores and surfaces in cement paste: correlations to processing and properties. J Adv Concr Technol. 6(1):5–29. F. Sanchez, A. Borwankar. (2010). Multi-scale performance of carbon microfiber reinforced cementbased composites exposed to a decalcifying environment Mater Sci. Eng.A; 527(13–14): 3151–8. K.P. Chong, E.J. Garboczi. (2002). Smart and designer structural material systems [Intelligent and design systems of structural materials]. Prog. Struct. Mat. Eng. 2002; 4:417–30.16. E.J. Garboczi. (2004). D.P. Structure of calcium silicate hydrate [Solubility and structure of calcium silicate]. Cem. Concr. 34(9): 1499–519. K. Sobolev. (2005). Mechano-chemical modification of cement with high volumes of blast furnace slag [Mechano-chemical modification of cement with high content of blast furnace slag]. Cem. Concr. Compos. 27(7–8):848–53. J. Minet, S. Abramson, B. Bresson, A. Franceschini, H. Van Damme, N. Lequeux. (2006). Organic calcium silicate hydrate hybrids: a new approach to cement based nanocomposites. J. Mater. Chem. 2006; 16:13 79–83. A. Franceschini, S. Abramson, V. Mancini, B. Bresson, C. Chassenieux, N. Lequeux. (2007). New covalent bonded polymer–calcium silicate hydrate composites [New covalent bonded polymer–calcium hydrosilicate composites]. J. Mater. Chem. 17:913–22. H. Matsuyama, J.F. Young. (1999) Intercalation of polymers in calcium silicate hydrate: a new synthetic approach to biocomposites. [Introduction of calcium hydroxide silicate polymers: a new synthetic approach to biocomposites.] Chem Mater 11:16–9. Borštnar M., Daneu N., Dolenec S. (2020). Phase development and hydration kinetics of belitecalcium sulfoaluminate cements at different curing temperatures, Ceramics International, Vol.46, Issue 18, 2020, pp. 29421–29428. DOI:10.1016/j.ceramint.2020.05.029. Zhenzhao D., Nguyen X. Q., Takumi N., Jihoon K., Yukio H., (2022). A study on the change in frost resistance and pore structure of concrete containing blast furnace slag under the carbonation conditions, Construction and Building Materials, Vol.331, 2022, pp 127295. DOI:10.1016/j.conbuildmat.2022.127295. Asmatulaev B.A., Asmatulaev R.B., Chumachenko V.I., Asmatulaev N.B., Islamov V.A. Bessonov D.V. (2021). Patent №6701 RK. Nanostructuring mineral powder and nanostructured asphalt concrete / Bull. №16. [Patent №6701 RK. Nanostrukturiruyushchij mineral'nyj poroshok i nanostrukturirovannyj asfal'tobeton / Asmatulaev B.A., Asmatulaev R.B., Chumachenko V.I., Asmatulaev N.B., Islamov V.A., Bessonov D.V. Publ. 2021.Byul. №16]. B.Asmatulayev., R.Asmatulayev., N.Asmatulayev., A.Bakirbayeva.(2022). Construction of durable roadsrom rolled concrete based on belite slag cement and binders, International Journal of GEOMATE, April 2023, Vol. 24, Issue 104, pp.27-35 Kumar R.(2023). Recent Progress in Newer Cementitious Binders as an Alternative to Portland Cement: Need for the 21st Century. In Recent Advances in Structural Engineering and Construction Management, Lecture Notes in Civil Engineering Vol.277, pp. 797–812.